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a b s t r a c t

This paper proposes a novel method based on Spectral Regression (SR) for efficient scene recognition.
First, a new SR approach, called Extended Spectral Regression (ESR), is proposed to perform manifold
learning on a huge number of data samples. Then, an efficient Bag-of-Words (BOW) based method is
developed which employs ESR to encapsulate local visual features with their semantic, spatial, scale, and
orientation information for scene recognition. In many applications, such as image classification and
multimedia analysis, there are a huge number of low-level feature samples in a training set. It prohibits
direct application of SR to perform manifold learning on such dataset. In ESR, we first group the samples
into tiny clusters, and then devise an approach to reduce the size of the similarity matrix for graph
learning. In this way, the subspace learning on graph Laplacian for a vast dataset is computationally
feasible on a personal computer. In the ESR-based scene recognition, we first propose an enhanced low-
level feature representation which combines the scale, orientation, spatial position, and local appearance
of a local feature. Then, ESR is applied to embed enhanced low-level image features. The ESR-based
feature embedding not only generates a low dimension feature representation but also integrates
various aspects of low-level features into the compact representation. The bag-of-words is then
generated from the embedded features for image classification. The comparative experiments on open
benchmark datasets for scene recognition demonstrate that the proposed method outperforms baseline
approaches. It is suitable for real-time applications on mobile platforms, e.g. tablets and smart phones.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the proliferation of mobile computing devices such as
smart phones and tablets, there is an increasing demand for real-
time vision algorithms for scene recognition and image classifica-
tion on these platforms. Potential applications include wearable
egocentric systems [1], mobile robots [2], and tourist information
access [3]. With limited memory and computational resources,
efficient high performance algorithms will be core technologies for
these emerging fields.

In the past decade, scene classification has attracted much
attention from researchers in computer vision and pattern recog-
nition. Recent progress has shown that approaches based on bag-
of-words can achieve impressive performance [4–10]. In BOW-
based methods, the first step is clustering the local visual features
into small groups as codewords, i.e. the bag-of-words. Each image
is then represented as a histogram of the bag-of-words. The next
step is applying a learning model on the histogram representation
for classification. The conventional BOW-based approach is simple
and effective, but its performance is not satisfactory on

challenging datasets. Most recent efforts focus on the extension
of BOW-based representation for improving performance on a
few challenging benchmark datasets. The successful approaches
include Spatial Pyramid Matching (SPM) to exploit spatial informa-
tion [5], various coding and pooling techniques to improve discrimi-
native power [11], and advanced classifiers for accurate classification
[12]. The introduction of these techniques has significantly improved
performance on the benchmark datasets. However, it also comes at
the expense of great increases in memory requirements and
computational costs.

Techniques of data dimensionality reduction are frequently
used to improve the efficiency of complicated algorithms based
on high-dimensional features. By reducing the dimensionality of
features, both memory size and computation time required by the
algorithm can be reduced greatly. Recently, Spectral Regression
(SR), a general framework based on graph learning for dimension-
ality reduction, has achieved better performance than the conven-
tional approaches of PCA (Principal Component Analysis) and LDA
(Linear Discriminant Analysis) in many applications [13,14]. These
recent progresses motivate us to apply SR to improve the effi-
ciency of scene recognition. To apply spectral regression to a real-
world problem, one has to solve the eigen-problem on an m�m
matrix, where m is the number of samples. It becomes prohibitive
to directly apply it to embed local image features, e.g. dense SIFT
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descriptors, for image classification since there are typically
over millions of dense local features extracted from all the training
images. Solving such an eigen-problem on a personal computer
is still infeasible now since more than 1TB memory space is
required.

In this paper, a novel approach to apply SR to encapsulate low-
level image features for efficient scene recognition is proposed.
First, a new SR approach, called Extended Spectral Regression
(ESR), is proposed particularly for feature dimensionality reduc-
tion on a vast dataset which contains a huge number of data
samples. Based on ESR, we propose a novel method to map the
low-level image features into an embedded manifold subspace for
efficient BOW-based image classification. We propose an
enhanced low-level feature representation which combines the
local appearance descriptor and its spatial, scale and orientation
information into a concise representation. ESR is then applied to
encapsulate the enhanced low-level features into a low dimen-
sional manifold subspace. The Bag-of-Words is then generated on
the embedded manifold subspace for image classification. With
the powerful manifold learning, it is possible to pull related local
features of the same class closer and push the local features from
different image classes apart in the manifold subspace. Hence, the
BOW generated on the manifold subspace will have better
descriptive power for image representation.

Our method not only generates lower dimension visual words
but also integrates various aspects of the low-level feature into the
compact representation. Therefore, we can obtain an effective
image representation of much lower dimension while achieving
better results compared with PCA and SPM. We have evaluated our
method on two challenging datasets for scene recognition, namely
Scene-15 and UIUC-Sports. We also implemented our method with
OpenCV for easy deployment and tested on a new indoor scene
dataset. The memory requirement and computational cost
indicate that our technique is suitable for deployment on portable
computing devices.

1.1. Related works

To achieve efficient image classification for real-time tasks, it is
desirable to reduce the dimension of image features, or visual
words. This speeds up the computation of histogram representa-
tion and reduces the memory requirements for visual vocabulary.
PCA has been applied on SIFT (Scale-Invariant Feature Transform)
and HOG (Histogram of Oriented Gradients) features. In some
papers [15,16], almost no loss of performance has been observed
when PCA is used, while in other papers [17], it is found that PCA
degrades performance considerably. In this paper, we propose to
use SR to reduce the dimension of low-level image features for
efficient scene recognition since recent papers have shown the
superiority of SR over PCA and LDA in many applications [13,14].
As mentioned above, SR cannot be applied directly to the dataset
of low-level image features since there may be over millions of
local features extracted from all training images. Hence, we
propose the ESR for this purpose.

Since its introduction [18,19], the bag-of-words model has
become the most effective representation for image classification.
Subsequent research has focused on extensions of BOW represen-
tation to achieve improved performance on challenging bench-
mark datasets. The progresses are achieved along two general
directions, namely (a) enhanced encoding and (b) spatial layout
representation.

In usual BOW methods, simple hard histogram encoding is
used where a local feature is assigned to the nearest visual word in
the vocabulary. On the bag-of-words generated by k-means,
enhanced encoding techniques have been proposed. In [16],
Gemert et al. proposed to replace hard quantization by soft

quantization, or kernel codebook encoding. Using soft assignment,
a local feature may be assigned to a few closer visual words in the
dictionary with weights within [0,1] according to its distance to
the words. Sparse coding approaches are further proposed to
improve the soft assignment [11,20,21]. Sparse coding uses a
linear combination of a small number of visual words to approx-
imate the local feature, and the coefficients of projecting the
feature down to the local linear subspace spanned by the set of
visual words are pooled in the histogram. An appealing encoding
approach, Fisher encoding, has been proposed for image classifica-
tion recently [15,22]. With a dictionary (BOW) of K words, Fisher
encoding captures the average first and second order differences
between the local features and the visual words on a learned GMM
(Gaussian Mixture Models) model for the codewords. Hence, it
leads to an extended image representation of Kð2Dþ1Þ dimen-
sions where D represents the feature dimension. Improvements
over state-of-the-arts have been obtained through these enhanced
encoding techniques, in particular the Fisher encoding. However,
image representation is greatly extended and extra computation is
required for feature encoding.

In the basic BOW framework, the image representation is a
frequency histogram of quantized local features, where the spatial
layout of the local features is completely ignored. Clearly, spatial
information of low-level features is useful since the compositions
of particular visual objects and context regions typically share
common spatial layout properties. Various approaches to encode
spatial information in BOW representation have been explored
[10,23,24]. Among them, the most effective way is to extend the
basic BOW representation by using Spatial Pyramid Matching
(SPM) [5]. SPM partitions the image into increasingly finer cells,
up to 3 layers, and concatenates the BOW histograms of the cells.
For a 3-layer pyramid, the image representation is extended to
∑2

i ¼ 04
iK ¼ 21K , where K is the dictionary size. The SPM strategy is

used in most state-of-the-art approaches [11,15,17,20,21,25–27].
More recently, Krapac et al. [28] proposed to extend the BOW
representation by using Fisher kernel to encode the spatial layout
of visual words, which is represented by learned spatial MoG
(Mixture of Gaussians, i.e. GMM) models. It can reduce the image
representation from 64,500 dimensions by SPM to 13,300 dimen-
sions and obtain comparable results. In our method, we propose a
concise low-level feature representation which includes the spa-
tial, scale, orientation, and appearance information of the local
feature. Such enhanced descriptor is then mapped into a compact
manifold subspace learned by ESR. Hence, there is no need to
extend the BOW representation to encode the spatial information
of local features.

It is worth to note that some sample selection methods, such as
Editing and Condensing algorithms [29], also generate a compact
sample set for classification. These methods aim at selecting a
sufficiently small set of samples from the whole training set by
removing outliers. The compact sample set can reduce the com-
putational burden of classification. However, as reported in [30],
discarding any features, even the most non-informative features
will result in the deterioration of image classification performance.
Different from these methods, our method embeds all the local
image features into a compact and effective manifold subspace for
efficient image classification.

1.2. Contributions

Our method is illustrated by Fig. 1, where the gray blocks
indicate the novel parts. It contains two stages, i.e. Training Stage
and Testing Stage. There are three steps in the Training Stage,
as illustrated by the three columns of blocks from the left to the
right in the figure. In the first step, we first cluster the huge
number of enhanced low-level local features from all training
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images into tiny clusters using k-means clustering, and then
apply ESR on the tiny clusters to learn a Mapping Matrix which
embeds the low-level local features into a compact manifold
subspace. We derive a reduced similarity matrix for graph learning
on the tiny clusters. Since the samples within each tiny cluster
may have different semantic labels, we propose a novel approach
to compute the weights for the similarity matrix which combines
the local distance and semantic labels of the features within each
cluster. In this way, SR on a vast dataset can be performed on a
personal computer. In the second step, we first map all the low-
level features into the manifold subspace, and then apply k-means
clustering to learn a dictionary, or Bag-of-Words, on the embedded
visual features. In the last step, for each training image, the low-
level features are extracted and mapped into the manifold sub-
space, and then a histogram of the embedded features on the Bag-
of-Words is generated. Multiple SVM classifiers are learned using
these histogram representations and image labels. In the end of
Training Stage, we obtain a Mapping Matrix for feature embed-
ding, a Bag-of-Words for global-level image representation, and
multiple SVMs for image classification. In the Testing Stage, for
each incoming new image, the enhanced low-level features are
extracted first, they are mapped into the compact manifold sub-
space by the Mapping Matrix, a histogram of these embedded
features on the Bag-of-Words is then generated and fed to the
multiple SVMs for classification.

The two important contributions of our paper are summarized
as below:

(1) A new Spectral Regression approach, Extended Spectral Regres-
sion (ESR), for SR-based manifold learning on a large dataset.

(2) A novel method based on ESR for efficient scene recognition
which uses ESR to effectively embed low-level image features
for BOW-based image classification.

The rest of this paper is organized as follows. Section 2
presents the proposed method, including a brief description of
Spectral Regression, the novel Extended Spectral Regression and
its application for efficient scene recognition. The experimental

results are reported in Section 3. Finally, Section 4 concludes
this paper.

2. The method

2.1. Background: spectral regression

Spectral Regression is a powerful computational approach
for manifold learning, clustering, and dimensionality reduction
[13,31]. Given m samples fxigmi ¼ 1 �Rq (xi is a feature vector
representing the sample point), using spectral regression, the
sample points can be mapped into an embedded manifold sub-
space represented as fzigmi ¼ 1 �Rd, d5m and doq, where the
statistical or geometric properties of the dataset are preserved and
the discriminant ability for classification can be enhanced [31].

The mapping is learned in a general graph embedding frame-
work. From the training samples, one can construct a weighted
graph G with m nodes. Let W be an m�m symmetric similarity
matrix with Wij representing the weight of the edge connecting
the ith and jth nodes in G, and y¼ ½y1; y2;…; ym�T be the map from
the graph to the real line. Consider the problem of mapping the
graph G to a line so that strongly connected points (i.e. similar or
related points) stay as close together as possible. The optimal y is
obtained by minimizing

∑i;jðyi�yjÞ2Wij ¼ 2yTLy; ð1Þ

where L¼D�W and D is a diagonal matrix with Dii ¼∑jWji.
Formally, this can be expressed as

yn ¼ arg min
yTDy ¼ 1

yTLy¼ arg min
yTLy
yTDy

¼ arg max
yTWy
yTDy

: ð2Þ

This is equivalent to the maximum eigenvectors of eigen-problem

Wy¼ λDy: ð3Þ
Solving this problem, one can obtain d eigenvectors fykg corre-
sponding to the d largest eigenvalues. According to other works on
spectral learning [31], here, we skip the top eigenvector y0 since it

Fig. 1. The block diagram of the proposed method.
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corresponds to the eigenvector of the minimum eigenvalue 0 for
the corresponding minimum eigen-problem Ly¼ λ0Dy.

For mapping all samples including new samples, a linear
function yi ¼ f ðxiÞ ¼ aTxi is chosen in [13]. This implicates an
assumption that the linear function passing the center of
embedded feature space, which may not be suitable for complex
local image features. According to the standard approach in
linear regression, we augment the feature vector xi with the
constant 1, that is x0

i ¼ ½xT
i ;1�T . Then, the linear mapping function

becomes yi ¼ f ðxiÞ ¼ aTx0
i with aARqþ1. The mapping vectors

fakgdk ¼ 1 can be obtained as the solution of the regularized least
square problem

ak ¼ arg min
a

∑
m

i ¼ 1
ðaTx0

i�yki Þ2þα‖a‖2
 !

; ð4Þ

where k¼ 1;…; d and yi
k is the ith element of yk. Expressing (4) as a

linear system, ak is the solution of

ðXXT þαIÞak ¼ Xyk ð5Þ
where I is a ðqþ1Þ � ðqþ1Þ identity matrix. Let A¼ ½a1; a2;…; ad� be
the learned ðqþ1Þ � d transformation matrix, then new input
sample x is embedded into the d dimensional manifold subspace

by x-z¼ ATx0. The linear function yi ¼ f ðxiÞ helps to generalize
the embedding so as to predict embedding for out-of-sample
examples without to retrain the embedding model, while out-of-
sample problem is a typical problem for spectral embedding
methods [32].

Different from PCA, SR maps the local image features into a
manifold subspace where the distance measure could be greatly
different from that on original feature space. Hence, with a
suitable clustering of related features, it is possible to obtain better
discriminative ability on the embedded manifold subspace than
that on the original feature space.

2.2. Extended spectral regression

Suppose we have m training samples. To apply spectral regres-
sion to learn feature embedding, one has to solve the eigen-
problem on an m�m matrix W, where Wij ¼ dðxi;xjÞ describes the
similarity between samples xi and xj. Existing methods applies
spectral regression to learn the embedded manifold of global
image representations, where the whole image is a sample
represented by a high-dimensional feature vector x, such as a
histogram on bag-of-words. In this way, performing spectral
regression on all training samples is feasible since in most cases
there are only hundreds to thousands of images in training sets. In
this paper, we investigate to apply spectral regression to learn the
embedded manifold of low-level local features in images, such as
SIFT or LBP (Local Binary Pattern) descriptors [33]. Typically, one
can extract hundreds or thousands of low-level local features from
an image. As an example, for an image of 320�240 pixels, one can
obtain 1064 dense SIFT features on scale of 16�16 pixels [5]. If the
training set consists of 1000 images, over one million dense SIFT
local features are generated from all the training images (i.e.
m41;000;000). It becomes prohibitive to directly apply spectral
regression to embed local image features from all training images.
Solving such an eigen-problem on a personal computer is still
infeasible now due to the limitation of memory space and
computational cost.

Let ðxi; ciÞ be a low-level local feature extracted from an image of
class ci, where ci ¼ 1;…; L is the label of image category. If dense SIFTs
are employed as local features, a sample xi represents a feature vector
of 128 dimensions (q¼128), and over one thousand sample features
are extracted from an image of 320�240 pixels [5]. We first group the

low-level feature samples fxigmi ¼ 1 from all training images into tiny
clusters fxkgnk ¼ 1 by using k-means clustering, where n can be selected
from 3000–6000 (based on the available memory size of the compu-
ter) while m may be larger than 1,000,000. The low-level features are
assigned to the clusters and the distortion of the features within one
tiny cluster is small since n is quite large. In one experiment on the
Scene-15 dataset [5], we group 1,440,284 normalized dense SIFT
features from 1500 images of 15 classes into 3000 clusters. The
smallest cluster only contains 1 samples, and the largest one contains
up to 9872 samples. The samples in one tiny cluster may come from
images of one class or all 15 classes.

To apply spectral regression to learn a better manifold subspace
of low-level image features, we propose an approach to reduce the
matrix Wm�m to matrix Wn�n by merging the rows and columns
belonging to the same tiny cluster. To be easy to understand, let us
first to see how to merge two rows and two columns of the
samples belonging to the same cluster. This is illustrated in Fig. 2.
The upper-left figure shows the matrix Wm�m for all samples
fxigmi ¼ 1, whereWij ¼ dðxi;xjÞ. Suppose the samples xi and xj belong
to the same tiny cluster xk and the sample xp belongs to a different
tiny cluster x l. When we replace xi and xj with xk and xp

with x l, the matrix becomes the upper-right version in Fig. 2,
where Wii, Wij, Wji, and Wjj turn into Wkk ¼ dðxk; xkÞ since xi and xj

are replaced by xk in dð�; �Þ, and Wip, Wjp, Wpi, and Wpj become
dðxk; x lÞ ¼Wkl. Now, the ith and jth rows become identical
and redundant, as well as the ith and jth columns. We can merge
the two rows and two columns belonging to the same tiny
cluster xk and the matrix Wm�m is reduced as W ðm�1Þ�ðm�1Þ,
as shown in the lower-left in Fig. 2, where the weight Wkl is the
sum of the corresponding weights from the merged rows and
columns in the similarity matrix Wm�m defined on the tiny
clusters.

Extending the above procedure to the merger of all related
rows and columns, one can obtain the reduced similarity matrix
Wn�n. Suppose that nk and nl are the numbers of samples
belonging to the clusters xk and x l, respectively. By merging nk
rows of samples belonging to the cluster xk and nl columns of
samples belonging to the cluster x l in the original similarity matrix
Wm�m, one can obtain the weight Wkl in Wn�n as

Wkl ¼ nknlWkl; k; l¼ 1;…;n; ð6Þ

where Wkl is defined on dðxk; x lÞ.
Obviously, one tiny cluster may contain low-level feature

samples from images of different classes. According to related
researches [31], to learn an effective mapping for feature embed-
ding for classification, the similarity measure for samples from the
same class should be defined differently with that for samples
from different classes. Considering this factor, we can modify (6) as

Wkl ¼ ∑
L

ck ¼ 1
nck
k ∑

L

cl ¼ 1
ncl
l Wklðck; clÞ ¼ ∑

L

ck ;cl ¼ 1
nck
k n

cl
l Wklðck; clÞ; ð7Þ

where nck
k is the number of low-level feature samples within the

tiny cluster xk and coming from images of category ck (i.e.,
∑L

ck ¼ 1n
ck
k ¼ nk), and Wklðck; clÞ is defined on dðxk; x lÞ as well as

the class labels ck and cl, which will be described below.
In existing methods of spectral analysis, there are two ways to

calculate the similarity weight Wijðci; cjÞ [13,31,34]. The first one
completely depends on the semantic labels of the samples, that is
Wijðci; cjÞ ¼ 1 for ci¼cj and 0 otherwise. The second is heat kernel
which depends only on the distance between two samples,
whether ci¼cj or not. The first one is not applicable for our case
since a tiny cluster may contain hundreds of low-level local
features extracted from images of different classes, and the low-
level local features from images of the same class may come from
different parts in the images for different objects. The second is not
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suitable for our task since, for classification purpose, we would like
the similarity to be smooth and large for local features from the
images of the same classes so that it can adapt to visual variance
caused by lighting conditions, viewing angles, etc., but small for
local features from images of different classes. In the embedded
manifold feature space, we wish to pull similar features from the
images of the same class as close as possible but push features
from images of different classes apart even though they may be
quite similar. Hence, we propose to combine the semantic infor-
mation and distance measure to compute the similarity weight
between tiny clusters. The weight is defined as

Wklðck; clÞ ¼
CSdSðxk; x lÞ if ck ¼ cl;
CDdDðxk;x lÞ if ckacl;

(
ck; cl ¼ 1;…; L; ð8Þ

where subscripts ‘S’ indicates ‘same class’ and ‘D’ indicates
‘different classes’, CSbCD, and dSðxk; x lÞ is smoother than
dDðxk; x lÞ. In this paper, to be adaptive to varying class numbers
for different multi-class classification problems, CS¼1 and
CD ¼min½0:2;1=ðL�1Þ� are chosen. Here, simply setting CD to be
0 is not acceptable since the similar low-level image features could
be shared by images of different classes, e.g., the corners of
windows may come from a building in an image of a street or a
window in an image of a bedroom. The feature similarity measures
dSðxk; x lÞ and dDðxk; x lÞ can be defined on feature's characteristics
in different applications.

2.3. ESR-based efficient scene recognition

A low-level local image feature, such as a SIFT or HOG descriptor, is
a coded representation of local visual pattern. In existing methods for

scene recognition and image classification, the bag-of-words (visual
dictionary) is directly built upon the local features. However, other
aspects of a low-level local feature, such as the position, scale, and
orientation, also provide important information of the image. In
recent approaches, such information is represented separately from
visual words, which results in combinatorial (or exponential) exten-
sion of image representation. If one can encode such information into
the low-level feature representation, the visual words will have
enhanced expressive power. It becomes possible to express the
information on ‘where’ and ‘what’ a local feature appears in an image
with a visual word. As an example, such a visual word can express the
concept of ‘a large right corner on the upper-left region’ in the image.
In addition, applying powerful subspace learning on such enhanced
low-level features, one can obtain a compact representation of visual
words which combine various aspects of low-level features. This will
result in efficient high-performance scene recognition. For this
purpose, we propose an enhanced low-level local feature to integrate
the information of spatial position, scale, orientation, and local
appearance into a concise feature vector.

Let ei be a low-level local feature descriptor (e.g. SIFT) extracted
at point ðxi; yiÞ with scale Si and orientation Oi from an image, and
the size of the image be M�N pixels. The scale measure can be
normalized as si ¼ Si=ðmaxðM;NÞ=2Þ since some open source soft-
ware (e.g. OpenCV) can extract the SIFT feature of half image size.
The orientation measure can be normalized as oi ¼ ðOi=180Þnπ. A
set of 9 spatial reference points in the image is used to encode the
spatial measurement of a local feature, as shown in Fig. 3. The
spatial reference points (blue dots in Fig. 3) are 3�3 grid points
evenly distributed in the image with offsets M/4 and N/4 to each
other and the image boundaries on the horizontal and vertical
directions, respectively. The spatial reference points can be

lxkx

kx klWkkW
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Fig. 2. The illustration of merging the rows and columns belonging to the same tiny cluster in the similarity matrix Wm�m . The upper-left figure shows the matrix Wm�m for
all samples fxigmi ¼ 1, where Wij ¼ dðxi ; xjÞ. Suppose the samples xi and xj belong to the same tiny cluster xk and the sample xp belongs to a different tiny cluster x l . When we
replace xi and xj with xk and xp with x l , the matrix becomes the upper-right version, whereWii,Wij,Wji, and Wjj turn intoWkk ¼ dðxk ; xkÞ, and Wip, Wjp, Wpi, and Wpj become
dðxk ; x lÞ ¼Wkl . Now, the ith and jth rows become identical and redundant, as well as the ith and jth columns. We can merge the two rows and two columns belonging to the
same tiny cluster xk and the matrix Wm�m is reduced as W ðm�1Þ�ðm�1Þ , as shown in the lower-left.
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expressed as ðxk; ykÞ; k¼ 1;⋯;9. Then, the spatial information of
the low-level local feature at ðxi; yiÞ (black dot in Fig. 3) can be
encoded according to its distances to the 9 spatial reference points.
It can be expressed as a vector ri ¼ ½r1;…; r9�T , where

rk ¼ exp � ðxi�xkÞ2
s2
x

þðyi�ykÞ2
s2
y

 !" #
ð9Þ

with sx ¼M=2 and sy ¼N=2 since the scale of a SIFT feature could
be half the size of the image. Compared with the widely used
spatial pyramid strategy, one advantage of our approach for
encoding the spatial information of a local feature is that it avoids
the hard divisions of image regions. It provides a soft and concise
coding of the spatial information. Combining the aspects of spatial
position, scale, orientation, and visual appearance of a local visual
feature, an enhanced low-level local feature can be obtained as
xi ¼ ½si; oi; rTi ; eTi �T , where, in this paper, ei denotes a dense SIFT or a
salient SIFT feature.

Obviously, combining various aspects of a local visual feature
into an enhanced low-level feature can increase the expressive
power of the visual words. However, simply generating the bag-of-
words directly on the enhanced low-level features may result in
the requirement of a great number of words for the dictionary due
to the effect of combinatorial explosion of involved information. In
addition, the simple and direct method might not be able to well
attribute the relative importance of different feature aspects since
their scales and lengths in the enhanced low-level features are
different, e.g., the length of ei is much larger than si and oi. Hence,
we propose to use ESR to embed the enhanced low-level features
for generating compact visual words (i.e. low-dimension features)
and an effective bag-of-words of limited size (i.e. small-size
dictionary) for scene recognition.

To apply ESR to the training dataset of enhanced low-level local
features from all training images, we have to define the way to
compute the similarities dSðxk; x lÞ and dDðxk; x lÞ in (8) since the
enhanced low-level feature combines various aspects of a local
feature. Let xk ¼ ðsk; ok; r

T
k ; e

T
k Þ represent a tiny cluster of the

enhanced low-level features. The measurements of feature's var-
ious aspects can be assumed as independent with each other.
Then, the similarity measures between two tiny clusters of

enhanced low-level features are defined as

dSðxk; x lÞ ¼ dSðek; e lÞdSðrk; r lÞdSðsk; slÞdSðok; olÞ;
dDðxk; x lÞ ¼ dDðek; e lÞdDðrk; r lÞdDðsk; slÞdDðok; olÞ;

(
ð10Þ

where the similarity measures for feature's each aspect are defined
as

dSðek; e lÞ ¼ exp �‖ek�e l‖2

ðρseÞ2

 !

dSðrk; r lÞ ¼ exp �‖rk�r l‖2

ðρsrÞ2

 !

dSðsk; slÞ ¼ exp �ðsk�slÞ2
ðρssÞ2

 !

dSðok; olÞ ¼ exp �ðok�olÞ2
ðρsoÞ2

 !

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

;

dDðek; e lÞ ¼ exp �‖ek�e l‖2

s2
e

� �

dDðrk; r lÞ ¼ exp �‖rk�r l‖2

s2
r

� �

dDðsk; slÞ ¼ exp �ðsk�slÞ2
s2
s

 !

dDðok; olÞ ¼ exp �ðok�olÞ2
s2
o

 !

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

:

ð11Þ
In (11), ρZ2, which means the bandwidths of Gaussian kernels for
the same classes are larger than those for different classes, i.e., the
kernel functions for the same classes are smoother and wider than
those for different classes. This is based on the following con-
siderations. For the similar local features from images of the same
scene class, there is a high chance that they come from the similar
objects in the images. As an example, in the images of the street
scene, the local features from the wheels of vehicles are similar.
However, due to the variations of view angles, scales, and lighting
conditions, the local features from similar objects in the images of
the same scene class might vary from image to image. To be able to
learn such variations for the local features from similar objects, it
is better to choose large bandwidths for wider kernel functions.
On the other hand, for the local features from images of different
scene classes, there is a high chance that they come from different
objects since, in many cases, the visual objects in images of
different scenes are different. For examples, we can observe high
buildings in images of city, while in the images of countryside,
what we often observe are the wild fields, farms, and forests.
Of course, there are local features from similar objects in images of
different scenes, e.g., the corner features from windows in images
of both street and bedroom. Hence, for different classes, it is better
to select small bandwidths for tighter peaked Gaussian kernels.
The benefits of this choice are twofold. First, it can cluster similar
low-level features from images of the same classes as close as
possible even though there are quite large variations, so that it
enhances the robustness to image variations caused by lighting
conditions, viewing angles, and variance of similar objects in the
same class of scenes. On the other hand, it can separate the low-
level features from images of different classes far apart even
though the difference is small, which can enhance the discrimi-
native power for image classification. In addition, computing the
weight using (7), (8), (10), and (11) is also helpful for clustering
shared features of a few classes in the embedded feature subspace.
Suppose the local features of clusters xk and x l are similar and
shared for classes c1 and c2, and they rarely appear in the images of
the other classes. Then, dSðxk; x lÞ is large, and nc1

k , nc2
k , nc1

l and nc2
l

are large, while the numbers for the rest classes are very small.
According to (7) and (8), Wkl can be expressed as

Wkl ¼WLargeþWSmall; ð12Þ

where

WLarge ¼ CSðnc1
k nc1

l þnc2
k nc2

l ÞdSðxk; x lÞþCDðnc1
k nc2

l þnc2
k nc1

l ÞdDðxk; x lÞ
WSmall ¼ ∑

ck ;cl
nck
k n

cl
l Wk;lðck; clÞ with ck; cl ¼ 1;…; L and ck; clac1; c2

ð13Þ

),( 11 yx

),( 99 yx

The local feature at (xi , yi)

Spatial reference points

Image

Fig. 3. The illustration of encoding the spatial information of a low-level local
feature. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

L. Li et al. / Pattern Recognition 47 (2014) 2940–2951 2945



since WLarge is quite large, local features of clusters xk and x l

would be mapped to close positions in the manifold subspace. This
would result in a compact and effective bag-of-words for robust
multi-class classification.

When applying Extended Spectral Regression on the dataset
fxkgnk ¼ 1 with Wkl, one can obtain the mapping matrix AT which
can be used to map an enhanced low-level feature x�Rq to the
embedded manifold subspace z�Rd since the distortion of the
extended low-level features within a tiny cluster is small. Image
classification can be performed under the conventional BOW
framework on the embedded features, due to the effectiveness of
BOW representation for image classification and the simplicity of it
for real-time tasks. First, a bag-of-words on the embedded features
fzigmi ¼ 1 is generated by using k-means clustering. The size of
the bag-of-words, or the number of visual words in the dictionary,
can be denoted as K. Then, the histogram on the BOW for each
image is employed as image representation for image classifica-
tion. The histogram can be represented as a vector h of K
dimensions. A SVM is trained for each image category with the
1-vs-rest rule, and a test image is assigned the label of the
classifier with the highest response.

There are two benefits of applying ESR to BOW-based scene
recognition. First, with the bag-of-words on the embedded sub-
space, the dimension of the visual word has been reduced to about
half the size of the original low-level feature representation (i.e.
d� q=2), which reduces the memory space for visual words and
speeds up the computation for generating histogram representa-
tion of an image. In this paper, the enhanced low-level feature on
SIFT is employed as the original low-level feature, which has 139
dimensions. Second, since the spatial and scale information of
local features has been embedded in the learned subspace for
visual words, there is no need to extend the BOW representation
for image representation using SPM. For a dictionary (bag-of-
words) of K words, our method uses a histogram of K dimensions
to represent an image, while the image representation using SPM
has 21K dimensions. For the similar performance, the image
representation of our method is less than 1/10 of that on SPM.
This means our image representation is much more effective than
SPM. Therefore, it is possible to perform real-time scene recogni-
tion in mobile computing platform with limited computing
resources.

3. Experimental results

We evaluated the effectiveness of our method on two challen-
ging datasets for scene recognition: Scene-15 [5] and UIUC-Sports
[35]. Since we aim at easy implementation with off-the-shelf open
sources for real-world applications, we also implemented a ver-
sion using OpenCV and evaluated on an indoor scene dataset. The
performance of Extended Spectral Regression with respect to
various parameters is also evaluated. The details are presented in
the rest of this section.

Low-level features: To be fair for comparison, densely sampled
grayscale SIFT features are used for Scene-15 and UIUC-Sports
datasets as in [5]. The dimension of SIFT descriptor is 128, and the
dimension of enhanced low-level local feature on SIFT is 139. The
dense SIFT features are sampled at 6 scales of 16, 24, 32, 48, 64, 80
pixels for patch sizes and the offsets of grids are the half sizes of
scales. From an image of 320�240 pixels, totally, 1882 local
features are extracted. In practice, the multiple scale SIFTs capture
two clusters of visual appearance features. The features of the first
three scales capture small local visual patterns, such as corners,
while the features of the second three scales capture some
distinctive objects in the scene, e.g. a window in a building or a
car on the street. Thanks to the integral image technique [36], the

extra cost to compute the multi-scale SIFTs over single scale SIFTs
is very low. In the OpenCV implementation, salient SIFT keypoints
are extracted using OpenCV functions. Standard k-mean algorithm
is used to generate BOW from the embedded features from all
training images, which clusters the embedded features into K
clusters and the centers of the clusters are used as the visual
words of the dictionary (bag-of-words). Typically, the size of the
bag-of-words (K) can be selected from 400 to 3000. Simple hard
quantization is used to generate histogram on BOW.

Parameters: The parameters used for all the experiments are
the same. The empirically chosen parameters are: α in (4) is 0.6;
se, sr, and ss in (11) are 0.05, 0.64, and 0.09, respectively. so is not
used except for the last testing on an indoor dataset with salient
SIFTs from OpenCV. The enhanced low-level local features (xi) of
139 dimensions are reduced as embedded features (zi) of 70
dimensions in the experiments. Since spectral regression is a
powerful machine learning approach, it is not sensitive to the
selection of parameters. In a quite large range of each parameter,
the variations of the final performance of scene recognition are
within 1%. The evaluation of ESR on parameters is presented in the
end of this section.

Classifiers: Both linear (Linear) and histogram intersection
kernel (HI) SVM classifiers from LibSVM are used in the evaluation
on Scene-15 and UIUC-Sports datasets. The linear SVM is efficient
and the computational cost is almost constant once the size of
BOW is fixed. Intersection kernel SVM can improve the classifica-
tion accuracy, but it requires to save the image representations of
all training images and computes the distance on kernels. Both
memory requirements and computational costs are very high.
Hence, the linear SVM is much more efficient for real-time tasks
on mobile platforms. In the OpenCV implementation, the linear
SVM from SVM-Light is employed for its efficiency.

Baselines: First, PCA is used as a baseline method to compare
the benefit of data dimensionality reduction for BOW-based scene
recognition. Second, to evaluate the effectiveness of embedding
various aspects of low-level feature for BOW-based scene recogni-
tion, we use 1-level SPM (SPM-1) as a baseline approach which
depends only on dense SIFT features and does not involve any
spatial information. Third, to evaluate the effectiveness of exploit-
ing spatial information of local features for scene recognition, we
use 3-level SPM (SPM-3) as baseline. For evaluation on the
implementation on an open source, the BOW method based on
salient SIFTs extracted by OpenCV is used as a baseline. The
baseline results on the first two datasets are obtained either from
the literature or by running the source code from the author.

3.1. Scene-15

This dataset [5] contains 4485 images of 15 scene categories,
including indoor and outdoor scenes. Each category has 200–400
gray-level images, and average image size is 300�250 pixels.
Following the experimental setup for this dataset [5], 100 images
per class are randomly selected as training samples and the rest
are used for testing, and the experiment is repeated 10 times. In
each experiment, the number of multi-scale dense SIFT features
extracted from all 1500 training images is over 2,658,000,
i.e. m42;658;000. They are first clustered into n¼3000 tiny
clusters to perform ESR. The average classification accuracy and
standard deviation on 15 categories are reported. The test is
performed on different size of the bag-of-words, i.e. K¼400, 800,
1600, 2400 and 3600, respectively.

The performances of our method and comparisons with the
three baseline approaches on linear and intersection kernel SVM
classifiers are shown in Fig. 4, where the plot shows the classifica-
tion accuracies as a function of the dimension of the image
representation. First, let us examine the effectiveness on feature
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dimensionality reduction. Comparing the plots of our method
(ESR) with those of PCA on both Linear and HI SVMs, one can
observe that ESR clearly outperforms PCA. This result indicates
that ESR is more effective on feature dimensionality reduction for
scene recognition. Second, let us compare our method with SPM-1.
It can be observed that with the same vocabulary size K, our
method outperforms SPM-1 by more than 6% when Linear SVM is
used and 4% when HI SVM is used. This means that the visual
words on the embedded low-level features have better represen-
tation power than that on the original SIFTs even though its
dimension (d¼70) is only slightly more than half the size of the
original SIFT descriptor (128). Third, compared with SPM-3, one
can notice that, for the image representations of the same
dimensions, our method is superior to the baseline for over 2%.
Our method achieves the comparable performance (81%) with the
image representation of 800 dimensions, while SPM-3 requires
8400 (21�400, over 10�800) dimensions to achieve 81.4%
accuracy. When using 3600 words, our method achieves 83.0%
accuracy, better than the best performance of SPM-3 (81.4%) with
8400 dimensions. This indicates that our embedding approach ESR
is much more effective than SPM to integrate spatial information
of low-level features.

Discussions: Scene-15 dataset has been widely used to test
image classification methods. As mentioned in Section 1.1, recent
researches focused on extensions of BOW representation to
achieve improved performance, or focused on post-stages after
the generation of bag-of-words. Our method focuses on pre-stage
processing before the generation of bag-of-words, as illustrated in
Fig. 1. We aim at mapping the raw low-level features into a
compact and enhanced manifold subspace so that the BOW
representation would be more effective for image classification.
Direct comparison with state-of-the-arts may not be suitable. As
examples, in [11], by introducing sparse coding on macro-features,
the performance on Scene-15 is improved from 80% to 85.6% with
the image representation being extended from 8400 to 43,008;
and by using Fisher encoding, accuracy is improved from 81.4% to

88.1% with the dimension of image representation being extended
to 64,500 [22,28]. In [37], the method just on SIFT features
achieves 80.1% accuracy, and when 4 types of features are
introduced, it achieves 86.6%. Our method achieves 83.0% with
3600 dimensions of image representation when only SIFT features
are employed. If we only consider the feature coding directly on
SIFT features, our method is superior to soft coding (76.7%) [16]
and sparse coding (80.3%) [20]. In principle, the post-stage
processes can be applied to our BOW representation for further
improvements, but with the expenses of great extension of image
representation and extra computation for feature encoding. It
might not be applicable for real-time systems on mobile platforms.

3.2. UIUC-sports

This is a dataset of 8 complex sports event categories (bocce,
croquet, polo, rowing, snowboarding, badminton, sailing, and rock-
climbing) [35]. Each category has 137–250 images. Following the
setup in [35], for each class, 70 images are randomly sampled for
training and 60 images are used for testing. All images are resized
to the resolution of about 320�240 pixels. For this dataset, totally
m¼ 1;053;920 multi-scale dense SIFT features are extracted from
all 560 training images for ESR learning. Again, they are first
clustered into n¼3000 tiny clusters to perform ESR. The test is
performed on vocabulary (bag-of-words) of size K¼400, 800,
1600, 2400, and 3600, respectively.

In Fig. 5, we show the classification accuracies for different
vocabulary sizes with both linear and intersection kernel SVM
classifiers, where the three horizontal lines represent the perfor-
mances of state-of-the-arts. Again, when compared with PCA, one
can observe the clear increases of performances, i.e. over 4%
increases in average, on both Linear and HI SVMs. In addition,
one can notice that the performance of ESR/Linear is very close to
PCA/HI. Using intersection kernel SVM, we obtain a clear margin of
the performance superiority over the state-of-the-arts. The best
performance of 82.170.7% is obtained with the dimension
K¼2400, superior to 73.4% in [35], 76.3% in [25], and 78.25% in [9].

3.3. Indoor scenes with OpenCV SIFTs

One of the most significant benefits of ESR-based scene recogni-
tion is its efficiency for real-time tasks. To evaluate our method for
real-time tasks on mobile platforms, a new dataset on indoor
navigation using mobile platform with small training samples was
built. The images are randomly extracted from videos captured by a
mobile platformwhen it was moving in a large office building. During
data collection, the camera was looking around as human beings
observing a new place. The videos were captured in two different
days. Training samples were extracted from one day and testing
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Fig. 5. The performance of our method (ESR) and comparisons with PCA and state-
of-the-arts on the Sports Event dataset.
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samples were extracted from the other day. The scenes in the
building are classified into five categories for context interpretation
by the robot. They are lift-lobby, corridor, cubicle, meeting-room, and
pantry. The difficulties of this dataset can be highlighted as
(a) Lighting conditions for training and testing images are different;
(b) many views in the testing set are not observed in the training set;
(c) there are many uninformative images in both training and testing
sets; (d) limited training samples for real-world application. A few
example images of the 5 scenes are displayed in Fig. 6 with one row
for each category, where the left-side images are more informative
and the right-side images are less informative since both training and
testing images are randomly selected from the videos.

For each category, we randomly selected 60 images for training
and 120 images for testing, where the testing images are much
more than the training images compared with some public
datasets [35]. When using K¼800 words, the baseline perfor-
mance is 75.1% and the accuracy rate of our method is 84.1%. We
implemented our algorithm using Visual Cþþ 2005 on a Samsung
Series 7 Slate handheld tablet with Core i5 processor (1.86 GHz
and 4 GB on OS64bits) and OpenCV 2.3.1 is employed. For the
image size of 320�240 pixels, the average time for our method is
245 ms, among them, the time for SIFT detection by OpenCV is
203 ms. Hence, it can achieve scene recognition at about 4 fps,
which is fast enough for real-time indoor navigation for robots and
humans. It can be further speeded up by improving the imple-
mentation of SIFT detection for mobile devices.

3.4. Evaluations on ESR

Comparison with SR: To perform SR on a large dataset, we use a
cluster center to represent a tiny cluster of samples, and merge the
identical rows and columns of the same cluster center in the
original similarity matrix W to reduce its size. Since a tiny cluster
may contain many similar samples from different classes, in the
reduced similarity matrix W , the weight Wkl is a weighted sum of
elements from the original similarity matrix W. Then, a question
arises: how close ESR approximates the original SR. Due to the
great number of low-level features from the datasets used above,
it is prohibited to perform SR on the such datasets. We perform the
comparisons on synthetic datasets.

To give a comprehensive visualization of the performance,
existing researches in the related field usually use synthetic data
of low-dimensions (e.g. 3D to 2D, like the famous Swiss roll [38])
to illustrate the performance. In this paper, random 3D dataset of
two classes are generated for each test. The samples of the first
class are generated by 3 symmetrical Gaussians centered at [2,0,0],
[�2,0,0] and [0,�2,0] at XYZ space with variances 0.7, 0.7 and 0.8,
respectively, for all 3 dimensions, and the samples of the second
class are created by another 3 Gaussians centered at [0,0,0],
[0,1.5,0] and [0,3.5,0] with variances of 0.3, 0.5 and 1.0, respec-
tively. 250 samples are generated for each Gaussian cluster, hence,
totally 1500 samples are generated for each test. The projections of
the test datasets on the XY plane are shown in the top row in
Fig. 7, where the red cross ‘� ’ indicates the samples of the first
class and the blue circle ‘○’ indicates the samples of the
second class.

For comparison, same implementations of SR and ESR, except
that ESR is based on tiny clusters, are tested. The weight of the
similarity matrix W for SR is computed as

Wij ¼
CSdSðxi; xjÞ
CDdDðxi;xjÞ

(
¼

CS exp
Jxi�xj J2

ðρsÞ2

 !

CD exp
‖xi�xj‖2

s2

 !
8>>>>><
>>>>>:

; ð14Þ

where xi and xj are two 3D samples. For ESR, the weight Wkl (8) in
the reduced similarity matrix W (7) is implemented as

Wklðck; clÞ ¼
CSdSðxk; x lÞ
CDdDðxk; x lÞ

(
¼

CS exp
‖xk�x l‖2

ðρsÞ2

 !
if ck ¼ cl;

CD exp
‖xk�x l‖2

s2

� �
if ckacl;

8>>>><
>>>>:

ð15Þ

where xk and x l represent the centers of two tiny clusters. We use
both SR and ESR to embed the original 3D sample data into 2D
manifold spaces.

Fig. 7 shows the comparisons of ESR with SR on different s
values while the other parameters kept as constants (CS¼1.0,
CD¼0.2 and ρ¼3). From the left column to the right column in
Fig. 7, the results are generated with s being 0.06, 0.08, 0.12, and

Fig. 6. Example images of indoor scenes captured in an office building.
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0.14, respectively. First, let us examine the effectiveness of data
embedding by SR. Comparing the figures of the second row with
those of the first row, one can find that, when the value of s
is suitable (e.g. sZ0:08), the geometric properties of the dataset
are preserved in the low-dimensional space. Meanwhile, the
distribution along the y-dimension in the original space is com-
pressed, which results in a more compact distribution, and, on the
other hand, the distribution along the x-direction is extended,
which may result in an enhanced discrimination since the clusters
of blue points (second class) are surrounded by the red points
(first class). However, if the value of s is too small (e.g. sr0:06),
the correlations between close samples are too tight that might
result in over-compression, as shown by the left figure in the
middle row, which seems to indicate that SR tries to embed the 3D
distribution of the dataset into a 1D manifold subspace. This may
also indicate that, if one wants to map the 3D dataset into a 1D
manifold subspace, it is better to select a small s value. Then, let us
compare the figures in the two lower rows, we can find that ESR
generates the similar distributions of the embedded datasets.
Moreover, if we examine the details more closely, we can find
that the datasets generated by ESR are slightly sparser than those
by SR, especially along the regions overlapped by the two classes,
which might be helpful to separate the data of the two classes
better. These are visual observations. We try to verify these
observations from a measure. Let R¼ ddnp=d

s
np be the ratio of the

average of the distances between two nearest points of different
classes to the average of the distances of two nearest points of the
same class. From 20 randomly selected cases similar to the two
right columns in Fig. 7, we obtain the mean and variance of R for
SR as 130.75 and 16.9 and those for ESR as 132.32 and 15.13, while
the corresponding values for the source data are 28.77 and 1.96.
It can be seen that the performances of SR and ESR are very close.

It is noteworthy that this measure might not be a formal one
to compare the data scatter since the scales of the distribu-
tions mapped by SR and ESR are greatly different. If the data
distribution is sparser, both dnp

d and dnp
s are larger, but R value may

be reduced.
For this case of synthetic datasets, it is found that the perfor-

mance of ESR is stable and close to SR on a large range of
parameter values. First, if ρ¼1, which means that the same
bandwidth is used for Gaussian kernels employed for samples of
both the same class and different classes, both SR and ESR cannot
work since the computation for eigen-analysis fails. If ρ is small,
the value of s should be large (e.g. s40:2), otherwise, it may
result in over-compression by both SR and ESR. Once ρZ3, both
SR and ESR become stable with s¼ 0:08. Too large of ρ might
cause over-smoothing of the dataset in the embedded subspaces. If
CD is set as the same as CS (e.g. CD ¼ CS ¼ 1), both SR and ESR result
in over-compression and the data of two classes are merged
together. For this synthetic case of two class datasets, when CD is
chosen from 0.8 to 0.01, both SR and ESR produce the results close
to those displayed in Fig. 7 with ρ¼3 and s¼0.09. The number of
tiny clusters depends on how wide the raw dataset scatters in the
original data space. In this test, the original samples are generated
by 6 Gaussians. We find that when more than 200 tiny clusters are
employed (i.e. nZ200), the performance of ESR is stable and close
to SR. We also evaluate the performance of SR and ESR on the
parameter α. With fixed parameters CS¼1, CD¼0.2, ρ¼3, s¼0.09,
and n¼300, when α varies from 0.01 to 50, the performance of SR
and ESR is stable and close to the results shown in the right three
columns in Fig. 7.

Performance on parameters: To evaluate the ESR performance
with respect to parameters on real datasets, we perform the
experiments on the Scene-15 dataset. First, we fix a default
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Fig. 7. Comparisons of SR and ESR on synthetic datasets. Top row: distributions of raw datasets; middle row: distributions of data embedded by SR; bottom row:
distributions of data embedded by ESR. From left to right, the s values used in SR and ESR are 0.06, 0.08, 0.12, and 0.14, respectively. (For interpretation of the references to
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parameter set as d¼70, ρ¼3, ðse;sr ;ssÞ ¼ ð0:17;0:967;0:136Þ,
α¼0.6, CD ¼ 1=ðL�1Þ ¼ 0:071, n¼3000, and K¼1600. Then, each
time, we change the value of one parameter and obtain the curve
of recognition accuracy. The curves of accuracy rates with respect
to s, ρ, α, CD, n and d are shown in Fig. 8, where, in all plots, the
range of vertical axis which represents the accuracy rate is from
75% to 85%. The upper-left figure shows the accuracy rate on s.
It can be seen that the accuracy rates are close and stable when
s varies from 0.05 to 0.21, and there is a slight drop when so0:05
or s40:21. The upper-middle curve shows the performance on ρ.
When ρ varies from 2 to 4, the obtained accuracy rate changes
between 82.08% and 82.48%. The upper-right figure shows the
obtained curve when α changes from 0.1 to 50, where the
horizontal axis represents log α. This plot indicates that when
0:3rαr10, the performance of ESR changes less and is over 82%.
The lower-left figure shows the curve of the performance on CD,
where the horizontal axis also represents log CD. The tested CD
values are 0.01, 0.071, 0.1, and 0.3, and the performance changes
between 81.27% and 82.48%. The evaluation on the number of tiny
clusters (n) is presented by the lower-middle figure. It shows that
no significant difference of performance is observed when n is
selected from 2000 to 5500. The accuracy rate is within [81.78%,
82.71%]. The last figure shows the change of accuracy rate with
respect to the dimension of the embedded features (d). While less
changes of performance are observed, it is interesting to find that
when the dimension is lower (dr70), the performance is slightly
better, which means ESR is an effective subspace learning
approach. All these figures in Fig. 8 indicate that ESR is very
robust to the parameters. In a quite large range for each parameter,
the changes of performance are within 0.5%.

4. Conclusions

We proposed a new spectral regression approach, called
Extended Spectral Regression (ESR), for subspace learning on a
large dataset containing a huge number of data samples. We first
cluster the huge number of samples into a large number of tiny
clusters. Then, we derive a reduced similarity matrix on the tiny
clusters for all data samples, and propose a new way to compute
the similarity weights for the edges between the tiny clusters,
where, each tiny cluster may contain hundreds of data samples
with different semantic labels. Evaluation on synthetic datasets

shown that ESR performs similar to SR with a much smaller
similarity matrix.

We apply ESR to embed the low-level image features to form an
effective bag-of-words representation for efficient scene recogni-
tion. To be able to effectively involve various aspects of low-level
features in the subspace manifold learning, we first proposed an
enhanced low-level feature representation which includes scale,
orientation, spatial position, and visual appearance of a local
feature. The similarity measure based on the enhanced low-level
feature representation for computing the edge weights in ESR
learning is designed. The ESR is then applied to learn an effective
embedding which maps the enhanced low-level features into an
optimized subspace manifold. The bag-of-words (dictionary) is
then generated from the embedded features for scene recognition.
The experiment results show that ESR is more effective than PCA
in data dimensionality reduction for scene recognition, and more
effective than SPM in combining spatial information of local
features for scene recognition.

There are two advantages of the proposed method for scene
recognition. First, it generates a compact representation of visual
words (about half size of original features) which can speedup the
computation of histogram representation on bag-of-words. Sec-
ond, it generates a much low dimension image representation on
bag-of-words which integrates various aspects of low-level fea-
tures, such as spatial information, for image classification. These
lead to an efficient approach for real-time scene recognition on a
portable mobile platformwith limited memory and computational
resources. The performance of scene recognition can be future
improved by combining more local features (e.g. colors) using ESR,
or introducing post-stage processes after the generation of bag-of-
words, e.g., the Fisher Vector encoding.
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